NEW SILICON-CONTAINING HETEROCYCLIC RINGS DERIVED FROM 1, 3-BIS(METHYLDICHLOROSILYL)PROPANE

K. A. Andrianov, L. M. Volkova, N. V. Delazari, L. I. Sosnovskaya, and N. A. Chumaevskii

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 3, pp. 438-445, 1967 UDC 661.718.5

Reaction of 1,3-bis(methyldichlorosilyl)propane with alcohols gives (methylalkoxychlorosilyl)propanes. Hydrolysis of the latter with the calculated amount of water in the presence of a HCl acceptor gives 2,6-dimethyl-2,6-dialkoxy-1-oxa-2,6-disilacyclohexanes. Hydrolysis of 1,3-bis(methyl-dichlorosilyl)propane and 1,3-bis(methylalkoxychlorosilyl)propane gives a tricyclic carbocyclosiloxane. A study is made of the reactions of 2,6-dimethyl-2,6-dialkoxy-1-oxa-2,6-disilacyclohexane with alcohols, triethylsilanol, triethylchlorosilane, and C₆H₅MgBr.

1, 3-Bis(methylalkoxychlorosilyl)propanes (I) are of potential interest for preparing carbocyclosiloxanes and polymers based on the latter. The present paper describes the synthesis of I, and reactions involved in their conversion to carbocyclosiloxanes.

When 1, 3-bis(dichloromethylsilyl)propane (III) reacts with alcohols in a mole ratio 1:2, the course of the reaction of replacement of chlorine atoms by alkoxy groups greatly depends on the nature of the alcohol taken. The yield of I decreases as chain length increases. 1, 3-Bis(methylphenoxychlorosilyl) propane and 1, 3-bis(methylbenzyloxychlorosilyl) propane are formed only in the presence of a HCl acceptor, urea. When the reaction is run with a III:ROH mole ratio of 1:1, the monoalkoxy derivatives II are always accompanied by considerable amounts of the dialkoxy ones (I):

$$Cl_2(CH_3)Si(CH_2)_3SiCH_3(CI)_2 + ROH = \frac{-HCI}{III}$$

$$\begin{array}{c} \longrightarrow & \operatorname{Cl}\left(\mathsf{RO}\right)\left(\mathsf{CH}_3\right)\operatorname{Si}\left(\mathsf{CH}_2\right)_3\operatorname{Si}\left(\mathsf{OR}\right)\left(\mathsf{Cl}\right)\mathsf{CH}_3 \ + \ \mathsf{CH}_3\left(\mathsf{RO}\right)\mathsf{Cl}\operatorname{Si}\left(\mathsf{CH}_2\right)_3\operatorname{Si}\mathsf{Cl}_2\mathsf{CH}_3 \\ & \mathsf{II} \end{array}$$

Table 1 on p. 350 gives the properties of the I and II compounds obtained.

When investigating the hydrolysis of 1, 3-bis (methyldichlorosilyl) propane (III) in neutral medium, formation of polymers was expected on hydrolysis of a tetrafunctional monomer. Instead there is quite unexpected formation of a crystalline compound IV, in 87.5% yield, melting point 101°-102°, and boiling point 135°-140° C (30 mm). Change in solution pH during hydrolysis of III affects only the yield of IV. Thus hydrolysis in acid and alkaline solution give, respectively, a 45% and a 60.5% yield of IV. Investigation of the properties of IV showed that the equation for the reaction is:

$$\begin{array}{c} \text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}\\ \text{CH}_{3}-\overset{1}{\text{Si}}-\text{O}-\overset{1}{\text{Si}}-\text{CH}_{3}\\ \text{CH}_{3}-\overset{1}{\text{Si}}-\text{O}-\overset{1}{\text{Si}}-\text{CH}_{3}\\ \text{O} & \text{O}\\ \text{CH}_{3}-\overset{1}{\text{Si}}-\text{O}-\overset{1}{\text{Si}}-\text{CH}_{3}\\ \text{IV} & \text{CH}_{2}-\text{CH}_{2}-\text{CH}_{2}\\ \end{array}$$

and the main product is the tricyclic carbocyclosiloxane IV, stable in air. Its properties are given in Table 2. The figure (p. 351) shows the IR spectra.

Reaction of I with sodium bicarbonate in ether at room temperature gives mainly IV.

However, if the reaction with NaHCO₃ is run in ether solution in the presence of Na₂SO₄ at 5°-10° C, alkoxy group hydrolysis is partly suppressed, and along with IV there is formed, in 10% yield, 2,6-dimethyl-2,6-dialkoxy-1-oxa-2,6-disilacyclohexanes (V). If hydrolysis of I is run in ether using the calculated amount of water plus triethylamine alone or admixed with urea, the main product is V, which is formed in 50% yield:

$$H_{2}O \xrightarrow{-2HCl} H_{3}C \xrightarrow{CH_{2}OR} R = alkyl, c_{6}H_{5}, c_{6}H_{5}CH_{2}.$$

Table 3 gives the properties of the V compounds prepared.

Investigation of the IR absorption spectra of V showed that they were alike, particularly in the region of Si—O—Si and Si—O—C vibrations. As an example, we give the IR absorption spectrum (in the $850-1350~{\rm cm}^{-1}$ region) of a V where R = n-C₅H₁₁.

In assigning the Si-O-Si and C-O-Si vibrations, papers [1, 2] were utilized.

Spectra of exactly the same character as that shown in the Fig. are observed for all V compounds. An almost similar picture is also found for V when $R = Et_3Si$. Table 3 gives Si-O-Si and Si-O-C vibration frequencies.

The IR spectra of the V compounds where $R = C_6H_5$ and $i-C_3H_7$ do not show Si-O-C vibration bands with the usual ~1100 cm⁻¹ frequency. This is because in the spectra of $(CH_3)_3SiOC_3H_{7-i}$ and $(CH_3)_3SiOC_6H_5$, the C-O-Si vibration frequency is, respectively, 1040 and 1260 cm⁻¹.

The table shows that there is practically no interaction between Si—O—Si and Si—O—C vibrations, and this is indicated by the frequencies of these vibrations being independent of the nature of R, as well as agreement with the frequencies of the vibrations of Si—O—Si and Si—O—C of compounds containing those groups [1, 2]. Furthermore the constancy of the frequencies of the Si—O—Si and Si—O—C vibrations in V indicates the lack of any effect of R on these vibrations in the C—O—Si—O—Si—O—C chain.

Study of the reactivity of the alkoxy group of V in reactions with alcohols, triethylsilanols, trialkyl-

Table 1
1-(Methyldichlorosilyl)-2-(methylalkoxychlorosilyl)propanes (II)
and 1, 3-Bis(methylalkoxychlorosilyl)propanes (I)

	Bp, °C		d_4^{20}	MR_D		Found, %		Calculated, %		Vield	
R	(pressure, mm)	n _D ²⁰		Found	Calcu- lated	Si	Cl	Si	CI	Yield,	
II											
C_2H_5	139—141 (35)	1.4500	1.1193	67.60	67.10	20.04	37.9	20.4	38.1	71.5	
$n-C_5H_{11}$	140—144(7)	1.4530	1.073	81,05	81.04	20,20 17,50 16,90	37.4 33.10 33.0	17.44	33.07	32.6	
<i>i</i> -C ₅ H ₁₁	138—140(8)	1,4525	1.073	81.02	81,04	17.25	33.6 33.6	17.44	33,07	39.0	
	1	1	1	I 00 = 0	1	1	اممما	21.44	27,15	95	
CH_3	98103(7)	1.4431	1.0890	63.58	63,63	21.60 21.50	28.01 28.06	21.44	21,10	30	
C_2H_5	145—147 (35)	1.4380	1.0415	72,95	72.98	19.49	24.51	19.42	24.50	80.7	
i-C ₃ H ₇	118—127 (7)	1.4340	1,0030	82.49	82.27	19,83 17,90	24.70	17.46	22.06	47.2	
n-C ₄ H ₉	155—158(7)	1.4440	1.005	91.26	91,57	18.41 16.1	22.30 20.4	16.25	20.6	46.1	
i-C ₄ H ₉	110.1—113(1)	1.4400	0.9917	91.75	91.57	16,3 16,24	20.2	16.25	20.6	67.6	
1-04119	110.1—113(1)					16.44	20.0			00.0	
$n-C_5H_{11}$	172—177 (7)	1.4465	0.9913	100.60	100,86	15.6	19.8	15.02	18.98	32.0	
<i>i</i> -C ₅ H ₁₁	165—173 (9)	1.4470	0.9844	100.90	100,86	15.25 14.78 15.00	19.4 19.1 19.5	15.02	18.98	56.0	
C_6H_5	185—195(2)	1.5295	1.150	103.20	103,12	13.43	18.65	14.33	18.41	36.4	
C ₆ H ₅ CH ₂	236—242(8)	1,5231	1,1235	112.50	112.42	13.90 13.26 13.08	18.77 15.99 16,03	13.57	17.15	49.6	

chlorosilanes, and the Grignard reagent, showed that the OR groups readily undergo transetherification in the presence of minute amounts of sodium alkoxide.

No considerable amounts of polymer and linear compounds were found to be formed in any of the reactions with alcohols.

In the reaction of 2, 6-dimethyl-2, 6-diisopropoxy-1-oxa-2, 6-disilacyclohexane with benzyl alcohol, transetherification took place without addition of a catalyst. Thus, mono- and dibenzyloxycarbocyclosiloxane were isolated. The structures of the transetherification products are proved by the identities of their physical constants with those of the compounds obtained by hydrolyzing I. The ethoxyl groups in 2, 6-dimethyl-2, 6-diethoxy-1-oxa-2, 6-disilacyclohexane are easily replaced, in the presence of sodium silanolate by triethylsiloxy groups, to give 2, 6-dimethyl-2, 6-di(triethylsiloxy)-1-oxa-2, 6-disilacyclohexane in 70.5% yield:

This compound is obtained in yields up to 9% by reacting V with $(C_2H_5)_3SiC1$ in the presence of 0.1% FeCl₃:

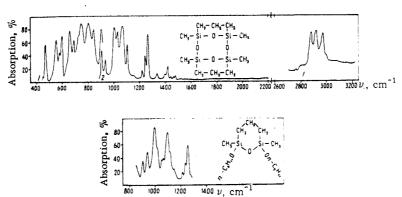
The analogous reaction of V with R = Me or C_4H_9 , with trimethylchlorosilane or trimethylacetoxysilane in the presence of FeCl₃ does not take place.

Treatment of V with the Grignard reagent gives replacement of the alkoxy group by phenyl. The reaction takes place stepwise. 2, 6-Dimethyl-2-methoxy-6-phenyl-1-oxa-2, 6-disilacyclohexane and 2, 6-dimethyl-2, 6-diphenyl-1-oxa-2, 6-disilacyclohexane were isolated:

$$\begin{array}{c} \text{H}_{2}\text{C} \xrightarrow{\text{C}} \text{H}_{2} \\ \text{H}_{3}\text{CO} \xrightarrow{\text{C}} \text{I} \xrightarrow{\text{C}} \text{CH}_{3} \\ \text{H}_{3}\text{CO} \xrightarrow{\text{C}} \text{I} \xrightarrow{\text{C}} \text{CH}_{3} \\ \end{array} + 2 \text{ C}_{8}\text{H}_{8}\text{MgBr} \xrightarrow{\text{C}} \begin{array}{c} \text{H}_{2}\text{C} \xrightarrow{\text{C}} \text{H}_{2}\text{CH}_{3} \\ \text{H}_{5}\text{C}_{8} \xrightarrow{\text{C}} \text{SI} \xrightarrow{\text{C}} \text{SI} \xrightarrow{\text{C}} \text{CH}_{3} \\ \end{array} + \\ \text{H}_{5}\text{C}_{8} \xrightarrow{\text{C}} \begin{array}{c} \text{C}\text{H}_{2} \\ \text{C}\text{H}_{3} \\ \text{C}\text{C}\text{H}_{3} \\ \end{array}$$

The structure of 2, 6-dimethyl-2, 6-diphenyl-1-oxa-2, 6-disilacyclohexane was shown from its preparation by hydrolysis of 1, 3-bis(methylphenylchlorosilyl)-propane:

Hydrolysis of unsymmetrical 1, 3-bis(dimethylphenylchlorosilyl)propane led to the isolation of a bicyclic compound:


Table 2 gives the properties of the compounds prepared.

EXPERIMENTAL

1, 3-Bis (methylethoxychlorosilyl) propane. A 3-necked flask, fitted with stirrer, reflux condenser, dropping funnel, and thermometer, was charged with 39.0 g (0.145 mole) III, which was stirred, and over a period of 20 min, 46.07 g (0.29 mole) EtOH added dropwise. The mixture was kept at 110° C for 2 hr, with stirring. Fractionation gave 33.86 g (80.7%) 1, 3-bis (methylethoxychlorosilyl) propane, bp 145°-147° C (35 mm); ${\rm n_D}^{20}$ 1.4380; ${\rm d_4}^{20}$ 1.0415. Found: C 36.92; 36.72; H 7.55; 7.44; Si 19.49; 19.89; Cl 24.51; 24.71%; MRD 72.95. Calculated for ${\rm C_9H_{22}Si_2O_2Cl_2}$: C 37.4; H 7.67; Si 19.42; Cl 24.50%; MRD 72.98.

The other I and II compounds (Table 1) were obtained similarly, apart from the compound with $R = C_6H_5CH_2$.

1, 3-Bis(methylbenzyloxychlorosilyl)propane. A flask, fitted as above, was charged with 27 g (0.1 mole) III, 12.1 g (0.2 mole) urea, and 50 ml toluene, the mixture stirred, and 21.6 g (0.2 mole) benzyl alcohol added. The mixture was held at 80° C and

IR absorption spectra of IV and 2, 6-dimethyl-2, 6-di-n-amyloxy-1-oxa-2, 6-disilacyclohexane: 1) Compound tabletted with KBr; 2) CCl₄ solution, any concentration.

Table 2
Heterocyclic Compounds Prepared from 1,3-Bis (methylalkoxychlorosilyl)propane

	;	Yield, %	87,5			32	31.1	16.8	I	
	%	Si	35.04			18.08	18.8	22.23	24.45	
	Calculated,	н	7.55		,	8,423	7.44	7.932	7.42	
?		O	37.41			58.04	68,45	57.1	57.64	_
7 - JP P		Si	34.55	34.82		17.15 17.26	18.91	18.68	23.93 23.97	
o	Found, %	н	7.52	7.52		8.42 8.38	7.37	7.78	7.43	
		O	37.43	37.39		58.73 58.91	67.36 68.0	60.40	57.65 57.82	
	MR _D	Calcu- lated	ı			86.72	91.74	71.94	131.52	
	M	Found				86.66	90.92 90.3 2	72.66	130.7	
		Calcu- lated	320.4			310.46	298,44	252.38	458	
	W	Found	310; 318	342; 330		300	293 293	240	420	
•		d. ²⁰				1.022	1.050	1.044	1.070	
	Bp, °C (pressure, mm)					1.4825	1,5445 1,5495	1.5130	1.5222	
			135—140 (30)	101—102°		90—93 (1)	142.5—143 (1) 135—137 (1)	92—95 (1)	222—228 (2)	
		Compound	CH ₂ -CH ₂ -CH ₂ CH ₃ -SI	CH ₃ —Si —— 0 —— Si—CH ₃	CH2-CH2-CH2 IV	H3CH3CH3 H3CH3CH3CH3	H, C, S, S, C, C, H, C, S, S, C, C, H, C, C, C, C, H, C, C, C, C, C, H, C,	H ₃ C CH ₃	H ₂ C, Si Si Si CH ₃ H ₃ C, Si Si Si CH ₃ H ₃ C, Si Si Si CH ₃ H ₃ C, Si Si Si Si CH ₃	CH3 CH3

Table 3

		vsi-0-C, cm	1096	1093.	1040	1098	9601	1097	1097	1265	1096	1080
e (V)	vsi-o-si cm ⁻¹		866	993	866	866	1000	866	966	866	266	966
	Yield,		57.6	51.7	39.8	38.6	49.5	38.5	43.1	42.0	74.5	70.5
	Calculated, %	Si	27.18	23.96	21,38	19,33	19.33	17.50	17.608	16.98	15,65	27.62
		н	8.83	9.47	9.988	10.34	10,34	10.76	10.76	6.711	7.296	10.40
		υ	40.75	46.11	50.43	53.79	53.74	56,55	56.55	61.78	63.64	50.18
lohexane	Found, %	Si	27.03 27.10	23.89	21.83	19.67	19,34	18.03	17.92 18.05	16,190	15.95 15.80	27.39 27.90
2, 6-Dimethyl-2, 6-dialkoxy-1-0xa-2, 6-disilacyclohexane (V)		Н	8.69	9.29	9.86	10.27	10.54	10,80	10.67	6.85	7.38	10.50
		C	41.31	46.31 46.27	49.18	52.88 52.48	53.80	56.20 56.07	56.13 56.41	62.03 62.04	62.98 63.22	50.51 50.57
	MRD	Calcu- Iated	52,86	62.36	71.65	80.95	80.95	90.24	90.24	92,50	101.96	116.76
		Found	52.72	62.13	71.47	79.82	80.74	89.50	89.50	92.58	101.1	115.4
	W	Calcu- lated	206.4	234.5	262.37	290.2	290.2	318.6	318.6	330	358.46	406.9
		Found	200.0 190.0	212.0 204.0	242.0 228.94	264.0 261.0	261.7 253.4	1	1	268.0 260.9	336.8 321.0	390.0 368.0
	d_4^{20}		1.001	0.9655	0.9371	0.9477	0.9286	0.9346	0.9306	1.100	1.083	0.9340
	п, д		1.4250	1.4250	1.4240	1.4345	1.4300	1.4380	1.4360	1.5285	1.5220	1.4430
	Bp, °C pressure, mm)		(2)	(2)	Ξ	(4)	Ξ	Ê	Ξ	Ξ	£	(2)
			59—61 (7)	28-36	51—54	122—127 (4)	69—89	91—93 (1)	97—98	138—141 (1)	173—176 (1)	137—139 (2)
		æ	СН3	C ₂ H _s	i-C ₃ H ₇	n-C ₄ H ₉	i-C ₄ H ₉	n-C ₅ H ₁₁	i-C _s H ₁₁	C ₆ H ₅	C ₆ H ₅ CH ₂	(C ₂ H ₅) ₃ Si

stirred for 1 hr 30 min. Distillation then gave 20.5 g (49.6%) 1, 3-bis (methylbenzyloxychlorosilyl)propane, bp 236°-242° C (8 mm); ${\rm n_D}^{20}$ 1.5231; ${\rm d_4}^{20}$ 1.1235. Found: Si 13.26; 13.08; Cl 16.99; 16.03%; MR_D 112.50. Calculated for C₁₉H₂₆Si₂O₂Cl₂: Si 13.57; Cl 17.15%; MR_D 112.42.

Conversion of III to IV. A flask fitted as described above, but without a thermometer, was charged with 43 g (0.508 mole) NaHCO₃, 6 g (0.042 mole) Na₂SO₄, and 125 ml ether. The whole was stirred, and over a period of 30 min a solution of 34.4 g (0.127 mole) III in 35 ml ether added. Vigorous evolution of CO₂ was observed. Then the mixture was heated and stirred for an hour. The solid was filtered off, mass 48 g. It was then washed with ether. On evaporating the ether filtrate, crystals separated. Cooling gave a further quantity of crystals. Successive cooling and filtering gave 17.8 g (87.5%) IV, mp $98^{\circ}-101^{\circ}$ C. The crystalline IV could readily be distilled. Distillation of 2.1 g gave 1.9 g compound bp 135°-140° C (30 mm); mp 101°-102° C. Found: C 37.43; 37.39; H 7.52; 7.52; Si 34.55; 34.82%; M 318; 310 (in benzene) 342; 330 (Rast). Calculated for $C_{10}H_{24}Si_4O_4$: C 37.47; H 7.55; Si 35.04%; M 320.4.

2, 6-Dimethyl-2, 6-diethoxy-1-oxa-2, 6-disilacyclohexane. A 3-necked flask, fitted as in the preceding experiment, was charged with a solution of 13.3 g (0.046 mole) 1, 3-bis(methylethoxychlorosilyl) propane in 28 ml ether, then 9.20 g (0.092 mole) triethylamine and 0.828 g (0.046 mole) water in 28 ml ether added over 20 min, with stirring (formation of triethylamine hydrochloride observed), 50 ml ether was added to give better stirring of the precipitate, the mixture was heated for 1 hr and then filtered. The solid was washed with ether. Distillation of the filtrate gave 5.54 g (51.7%) 2, 6-dimethyl-2, 6-diethoxy-1-oxa-2, 6-disilacyclohexane, bp 115°-130°C; n_D²⁰ 1.4249; d_4^{20} 0.9655. Repeated distillation gave $3.2\overline{2}$ g pure compound bp 32°-34° C (2 mm); n_D^{20} 1.4250; d_4^{20} 0.9655. Found: Si 23.89; 23.93%; H 9.29; 9.09; C 46.31; 46.27%; MRD 63.13. Calculated for C₉H₂₂Si₂O₃: C 46.11; H 9.47; Si 23.96%; MR_D 62.36.

2, 6-Dimethyl-2, 6-dimethoxy-1-oxa-2, 6-disilacyclohexane. A mixture of 22.46 g (0.865 mole) 1, 3-bis (methylmethoxychlorosilyl)propane, 10.5 g (0.173 mole) urea, 1.56 g (0.0865 mole) water, and 30 ml ether was stirred and heated for 40 min. A further 60 ml ether was added as precipitate formed. The mixture was stirred and heated for 2 hr. Distillation gave 10.26 g 2, 6-dimethyl-2, 6-dimethoxy-1-oxa-2, 6-disilacyclohexane, bp 59°-61° (7 mm); ${\rm n_D}^{20}$ 1.4250; ${\rm d_4}^{20}$ 1.001. Found: C 41.31; 41.41; H 8.69; 8.85; Si 27.03; 27.10%; MR 52.86. Calculated for ${\rm C_7H_{18}Si_2O_3}$: C 40.75; H 8.82; Si 27.18%; MR_D 52.72.

2, 6-Dimethyl-2, 6-bis(triethylsiloxy)-1-oxa-2, 6-disilacyclohexane. A flask was fitted with stirrer, condenser set for downward distillation, and thermometer, and charged with 4.67 g (0.02 mole) 2, 6-dimethyl-2, 6-diethoxy-1-oxa-2, 6-disilacyclohexane, 5.30 g (0.04 mole) triethylsilanol, and 0.10 g Na. The mixture was held at 150° C for 4 hr, with stirring.

Distillation then gave 4.68 g (70.5%) 2, 6-dimethyl-2, 6-bis(triethylsiloxy)-1-oxa-2.6-disilacyclohexane, bp 105°-127° (1 mm); n_D^{20} 1.4425; d_4^{20} 0.9346. After repeated distillation it had bp 137°-139° C (2 mm); n_D^{20} 1.4430; d_4^{20} 0.9346. Found: C 50.51; 50.57; H 10.50; 10.43; Si 27.39; 27.90%; MR_D 115.4. Calculated for $C_{17}H_{42}Si_4O_3$: C 50.18; H 10.40; Si 27.62%; MR_D 116.76.

Reaction of phenylmagnesium bromide with 2, 6dimethyl-2, 6-dimethoxy-1-oxa-2, 6-disilacyclohexane. A solution of 8.77 g (0.0425 mole) 2, 6-dimethyl-2, 6-dimethoxy-1-oxa-2, 6-disilacyclohexane in 80 ml ether was dropped slowly into a heated solution, in 100 ml ether, of the Grignard reagent prepared from 2.07 g (0.085 mole) Mg and 13.55 g (0.085 mole) bromobenzene. The mixture was then heated for 2 hr 30 min, and stirred vigorously. Distillation of the filtrate gave: 1) 1.78 g (16.8%) 2, 6-dimethyl-2-methoxy-6phenyl-1-oxa-2, 6-disilacyclohexane bp 92°-95° (1 mm); np^{20} 1.5130; $\mathrm{d_4}^{20}$ 1.044. Found: C 60.40; H 7.78; Si 18.68%; MRD 72.66. Calculated for $C_{12}H_{20}Si_2O_2$: C 57.1; H 9.32; Si 22.23%; MR_D 71.93; 2) 3.94 g (31.1%) 2, 6-dimethyl-2, 6-diphenyl-1-oxa-2, 6-disilacyclohexane, bp 142.5°-143°C (1 mm); n_D^{20} 1.5445; d_4^{20} 1.050, Found: C 67.36; H 7.37; Si 18.91%; MRD 90.92. Calculated for $C_{17}H_{22}Si_2O$: C 68.45; H 7.44; Si 18.8%; MR_D 91.74.

2, 6-Dimethyl-2, 6-diphenyl-1-oxa-2, 6-disilacyclohexane. A flask with a stirrer, reflux condenser, thermometer, and dropping funnel, was charged with 21.5 g KOH, 70 ml water, and 70 ml ether, the mixture cooled to +5° C, and at that temperature a solution of 54.3 g (0.154 mole) CH₃(C₆H₅)ClSiCH₂CH₂-CH₂SiCH₃(C₆H₅)Cl in 200 ml ether dropped in. Then the mixture was stirred for 1 hr, the ether layer separated off, washed with water till neutral, dried, and vacuum-distilled, to give 26 g of the desired product, bp 134°-137° (1 mm); nD²⁰ 1.5495; d₄²⁰ 1.0509. Found: C 68.00; 67.91; H 7.04; 7.24; Si 18.80; 18.78%; MRD 90.32. Calculated for C₁₇H₂₂Si₂O: C 68.45; H 7.38; Si 18.71%; MRD 91.74.

2, 6-Dimethyl-2, 6-di-n-amyloxy-1-oxa-2, 6-disilacyclohexane. a) A mixture of 14.66 g (0.039 mole) 1, 3-bis(methyl-n-amyloxychlorosilyl)propane, 4.73 g (0.078 mole) urea, 0.702 g (0.039 mole) water, and 50 ml ether, was heated and stirred for 40 min. After cooling to room temperature, a solution of 7.88 g (0.078 mole) Et₃N in 50 ml ether was added, and the whole heated for 2 hr. Fractional distillation gave 4.79 g (38.5%) 2, 6-dimethyl-2, 6-di-n-amyloxy-1-oxa-2, 6-disilacyclohexane, bp 138°-144° C (7 mm). After repeated distillation it had bp 91°-93° C (1 mm); nD²⁰ 1.4380; d_4^{20} 0.9346. Found: C 56.20; 56.07; H 10.80; 10.73; Si 18.00; 17.99%. MRD 89.50. Calculated for $C_{15}H_{34}Si_2O_3$: C 56.55; H 10.76; Si 17.60%; MRD 90.24.

b) 4.60 g (0.022 mole) 2, 6-dimethyl-2, 6-dimethoxy-1-oxa-2, 6-disilacyclohexane, 3.88 g (0.044 mole) n-AmOH, and 0.16 g Na were heated and stirred together for 4 hr at 120° -160° C, the MeOH being distilled off (1.6 ml; $\rm np^{20}$ 1.3350). Distillation

of the residue in the flask gave 2.68 g 2, 6-dimethyl-2, 6-di-n-amyloxy-1-oxa-2, 6-disilacyclohexane, bp $105^{\circ}-107^{\circ}$ (2 mm); $n_{\rm D}^{20}$ 1.4378; $d_{\rm 4}^{20}$ 0.9311.

Reaction of 2, 6-dimethyl-2, 6-diisopropoxy-1-oxa-2, 6-disilacyclohexane with benzyl alcohol. 3.85 g (0.0139 mole) 2, 6-dimethyl-2, 6-diisopropoxy-1-oxa-2, 6-disilacyclohexane and 3.36 g (0.031 mole) $C_6H_5CH_2OH$ were heated together for 5 hr, and 1 ml i-PrOH distilled off. Distillation of residue in the flask gave: 1) 1.08 g material 90°-93°C (1 mm); n_D^{20} 1.4825; d_4^{20} 1.022. Found: C 58.73; 58.91; H 8.42; 8.38; Si 17.15; 17.26%; MR_D 86.66. Calculated for $C_{15}H_{26}Si_2O_3$: C 58.04; H 8.42; Si 18.08%; MR_D 86.724; 2) 1.43 g dibenzyloxydimethyldisilacyclohexane bp 140°-142°C (0.5 mm); n_D^{20} 1.5120; d_4^{20} 1.072. Found: C 62.67; H 7.49; Si 16.16%; MR_D 100.3. Calculated for $C_{19}H_{26}Si_2O_3$: C 63.64; H 7.296; Si 15.65%; MR_D 101.79.

2, 6-Dimethyl-2, 6-dibenzyloxy-1-oxa-2, 6-dis-ilacyclohexane. Hydrolysis of 16.41 g (0.0398 mole)

1, 3-bis (methylbenzyloxychlorosilyl) propane with 0.7 g water (0.0398 mole), in the presence of 4.8 g (0.0796 mole) urea, and 8.06 g (0.0796 mole) Et₃N in 50 ml ether gave 9 g 2, 6-dimethyl-2, 6-dibenzyloxyloxal-0xa-2, 6-disilacyclohexane bp 173°-176° C (1 mm) np²⁰ 1.5220; d₄²⁰ 1.083. Found: C 62.98; 63.22; H 7.38; 7.32; Si 15.95; 15.80%; MRD 101.1. Calculated for $C_{19}H_{26}Si_2O_3$: C 63.66; H 7.29; Si 15.65%; MRD 101.7.

REFERENCES

- 1. K. A. Andrianov, L. M. Volkova, N. V. Delazari, and N. A. Chumaevskii, DAN, 160, 1307, 1965.
- 2. N. A. Chumaevskii, Opt. i spektr., 10, 69, 1961.

22 June 1965 Institute of Heteroorganic Compounds, AS USSR, Moscow